
COP 4610: Introduction to Operating Systems (Spring 2016)

Chapter 9
Virtual Memory

Zhi Wang

Florida State University

Content

• Background
• Demand paging
• Copy-on-write
• Page replacement
• Thrashing
• Memory-mapped files
• Operating-system examples

Background

• Code needs to be in memory to execute, but entire program rarely
needed or used at the same time
• error handling code, unusual routines, large data structures

• Consider ability to execute partially-loaded program
• program no longer constrained by limits of physical memory
• programs could be larger than physical memory

Background

• Virtual memory: separation of logical memory from physical memory
• only part of the program needs to be in memory for execution

• logical address space can be much larger than physical address space
• more programs can run concurrently
• less I/O needed to load or swap processes (part of it)

• allows memory (e.g., shared library) to be shared by several processes
• allows for more efficient process forking (copy-on-write)

• Virtual memory can be implemented via:
• demand paging
• demand segmentation

Virtual Memory Larger Than Physical Memory

hard disk

Shared Library Using Virtual Memory

Demand Paging
• Demand paging brings a page into memory only when it is accessed

• if page is invalid ➠ abort the operation
• if page is valid but not in memory ➠ bring it to memory via swapping
• no unnecessary I/O, less memory needed, faster response, more apps

• Lazy swapper: never swaps a page in memory unless it will be needed
• the swapper that deals with pages is also caller a pager

• Pre-Paging: pre-page all or some of pages a process will need, before they are referenced
• it can reduce the number of page faults during execution
• if pre-paged pages are unused, I/O and memory was wasted

• although it reduces page faults, total I/O# likely is higher

Demand Paging

Demand Paging

• Extreme case: start process with no pages in memory (aka. pure demand paging)
• OS sets instruction pointer to first instruction of process

• invalid page ➠ page fault
• every page is paged in on first access

• program locality reduces the overhead
• an instruction could access multiple pages ➠ multiple page faults

• e.g., instruction, data, and page table entries for them
• Demand paging needs hardware support

• page table entries with valid / invalid bit
• backing storage (usually disks)
• instruction restart

Valid-Invalid Bit

• Each page table entry has a valid–invalid (present) bit
• V ➠ in memory (memory is resident), I ➠ not-in-memory
• initially, valid–invalid bit is set to i on all entries
• during address translation, if the entry is invalid, it will trigger a page fault

• Example of a page table snapshot:

v!
v!
v!
v!
i!

i!
i!

….!

Frame #! v/i bit!

page table!

Page Table (Some Pages Are Not in Memory)

Page Fault

• First reference to a non-present page will trap to kernel: page fault
• Operating system looks at memory mapping to decide:

• invalid reference ➠ deliver an exception to the process
• valid but not in memory ➠ swap in

• get an empty physical frame
• swap page into frame via disk operation
• set page table entry to indicate the page is now in memory
• restart the instruction that caused the page fault

Page Fault Handling

Demand Paging: EAT

• Page fault rate: 0 ≤ p ≤ 1
• if p = 0 no page faults
• if p = 1, every reference is a fault

• Effective Access Time (EAT):

(1 – p) x memory access	 + p x (

page fault overhead +

swap page out + swap page in +

instruction restart overhead)

Demand Paging Example

• Assume memory access time: 200 nanoseconds, average page-fault service
time: 8 milliseconds
• EAT = (1 – p) x 200 + p x (8 milliseconds)

	 	 = (1 – p) x 200 + p x 8,000,000

 	 = 200 + p x 7,999,800
• if one out of 1,000 causes a page fault, then EAT = 8.2 microseconds

• a slowdown by a factor of 40!
• if want < 10 percent, less than one page fault in every 400,000 accesses

Copy-on-Write

• Copy-on-write (COW) allows parent and child processes to initially share the
same pages in memory
• the page is shared as long as no process modifies it
• if either process modifies a shared page, only then is the page copied

• COW allows more efficient process creation
• no need to copy the parent memory during fork
• only changed memory will be copied later

• vfork syscall optimizes the case that child calls exec immediately after fork
• parent is suspend until child exits or calls exec
• child shares the parent resource, including the heap and the stack

• child cannot return from the function or call exit
• vfork could be fragile, it is invented when COW has not been implemented

Before Process 1 Modifies Page C

After Process 1 Modifies Page C

Page Replacement

• Memory is an important resource, system may run out of memory
• To prevent out-of-memory, swap out some pages

• page replacement usually is a part of the page fault handler
• policies to select victim page require careful design

• need to reduce overhead and avoid thrashing
• use modified (dirty) bit to reduce number of pages to swap out

• only modified pages are written to disk
• select some processes to kill (last resort)

Page Fault Handler (with Page Replacement)

• To page in a page:
• find the location of the desired page on disk
• find a free frame:

• if there is a free frame, use it
• if there is none, use a page replacement policy to pick a victim frame, write

victim frame to disk if dirty
• bring the desired page into the free frame; update the page tables
• restart the instruction that caused the trap

• Note now potentially 2 page I/O for one page fault ➠ increase EAT

Page Replacement

Page Replacement Algorithms

• Page-replacement algorithm should have lowest page-fault rate on both first
access and re-access
• FIFO, optimal, LRU, LFU, MFU…

• To evaluate a page replacement algorithm:
• run it on a particular string of memory references (reference string)

• string is just page numbers, not full addresses
• compute the number of page faults on that string

• repeated access to the same page does not cause a page fault
• in all our examples, the reference string is 	

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Page Faults v.s. Number of Frames

First-In-First-Out (FIFO)

• FIFO: replace the first page loaded
• similar to sliding a window of n in the reference string
• our reference string will cause 15 page faults with 3 frames
• how about reference string of 1,2,3,4,1,2,5,1,2,3,4,5 /w 3 or 4 frames?

• For FIFO, adding more frames can cause more page faults!
• Belady’s Anomaly

FIFO Illustrating Belady’s Anomaly

Optimal Algorithm

• Optimal : replace page that will not be used for the longest time
• 9 page fault is optimal for the example on the next slide

• How do you know which page will not be used for the longest time?
• can’t read the future
• used for measuring how well your algorithm performs

Least Recently Used (LRU)

• LRU replaces pages that have not been used for the longest time
• associate time of last use with each page, select pages w/ oldest timestamp
• generally good algorithm and frequently used
• 12 faults for our example, better than FIFO but worse than OPT

• LRU and OPT do NOT have Belady’s Anomaly
• How to implement LRU?

• counter-based

• stack-based

LRU Implementation

• Counter-based implementation
• every page table entry has a counter
• every time page is referenced, copy the clock into the counter
• when a page needs to be replaced, search for page with smallest counter

• min-heap can be used
• Stack-based implementation

• keep a stack of page numbers (in double linked list)
• when a page is referenced, move it to the top of the stack
• each update is more expensive, but no need to search for replacement

Stack-based LRU

LRU Implementation

• Counter-based and stack-based LRU have high performance overhead
• LRU approximation with a reference bit

• associate with each page a reference bit, initially set to 0
• when page is referenced, set the bit to 1 (done by the hardware)
• replace any page with reference bit = 0 (if one exists)

Counting-based Page Replacement

• Keep the number of references made to each page
• LFU replaces page with the smallest counter
• MFU replaces page with the largest counter

• based on the argument that page with the smallest count was probably
just brought in and has yet to be used

• LFU and MFU are not common

Thrashing

• If a process doesn’t have “enough” pages, page-fault rate may be high
• page fault to get page, replace some existing frame
• but quickly need replaced frame back
• this leads to:

 low CPU utilization ➠

	 	 kernel thinks it needs to increase the degree of

 multiprogramming to maximize CPU utilization ➠

	 	 another process added to the system
• Thrashing: a process is busy swapping pages in and out

Thrashing

Demand Paging and Thrashing

• Why does demand paging work?
• process memory access has high locality
• process migrates from one locality to another, localities may overlap

• Why does thrashing occur?
• total size of locality > total memory size

Memory Access Locality

Working-Set Model

• Working-set window(Δ): a fixed number of page references
• if Δ too small ➠ will not encompass entire locality
• if Δ too large ➠ will encompass several localities
• if Δ = ∞ ➠ will encompass entire program

• Working set of process pi (WSSi): total number of pages referenced in the most
recent Δ (varies in time)

• Total working sets: D = ∑ WSSi
• approximation of total locality
• if D > m ➠ possibility of thrashing
• to avoid thrashing: if D > m, suspend or swap out some processes

Working-Set Model

Kernel Memory Allocation

• Kernel memory allocation is treated differently from user memory
• for kernel data structures, and for user applications
• key to the OS performance: utilization, fairness, performance,…

• Kernel memory is often allocated from a free-memory pool
• kernel requests memory for structures of varying sizes
• some kernel memory needs to be physically contiguous

• e.g., for device I/O

Buddy System

• Memory allocated using power-of-2 allocator
• memory is allocated in units of the size of power of 2

• round up a request to the closest allocation unit
• split the unit into two “buddies” until a proper sized chunk is available

• e.g., assume only 256KB chunk is available, kernel requests 21KB
• split it into Al and Ar of 128KB each
• further split an 128KB chunk into Bl and Br of 64KB
• again, split a 64KB chunk into Cl and Cr of 32KB each
• give one chunk for the request

• advantage: it can quickly coalesce unused chunks into larger chunk
• disadvantage: internal fragmentation

Buddy System Allocator

Slab Allocator

• Slab allocator is a cache of objects
• a cache in a slab allocator consists of one or more slabs
• a Slab contains one or more pages, divided into equal-sized objects
• kernel uses one cache for each unique kernel data structure

• when cache created, allocate a slab, divided the slab into free objects
• objects for the data structure is allocated from free objects in the slab
• if a slab is full of used objects, next object comes from an empty/new slab

• Benefits: no fragmentation and fast memory allocation
• some of the object fields may be reusable; no need to initialize again

Slab Allocation (Linux)

Other Issues – TLB Reach

• TLB reach: the amount of memory accessible from the TLB
• TLB reach = (TLB size) X (page size)

• Ideally, the working set of each process is stored in the TLB
• otherwise there is a high degree of page faults

• Increase the page size to reduce TLB pressure
• it may increase fragmentation as not all applications require large page sizes
• multiple page sizes allow applications that require larger page sizes to use them

without an increase in fragmentation

Other Issues: Program Structure

• Program structure can affect page faults
• int[128,128] data; each row is stored in one page
• Program 1:	

 for (j = 0; j <128; j++) 
 for (i = 0; i < 128; i++) 
 data[i,j] = 0;

	 128 x 128 = 16,384 page faults (assume TLB only has one entry)

• Program 2:

 for (i = 0; i < 128; i++) 
 for (j = 0; j < 128; j++) 
 data[i,j] = 0;

	 128 page faults

Operating System Examples

• Windows XP
• Solaris

Windows XP

• Uses demand paging with clustering
• clustering brings in pages surrounding the faulting page

• Processes are assigned working set minimum and set maximum
• wsmin: minimum number of pages the process is guaranteed to have
• wsmax: a process may be assigned as many pages up to its wsmax

• When the amount of free memory in the system falls below a threshold:
• automatic working set trimming to restore the amount of free memory
• it removes pages from processes that have more pages than the wsmin

Solaris

• Three thresholds to determine paging and swapping
• lotsfree: threshold (amount of free memory) to begin paging
• desfree: threshold parameter to increasing paging
• minfree: threshold parameter to being swapping

• Pageout scans pages, looking for pages to replace
• less free memory more frequent calls to page out
• two scan rate: slow scan and fast scan
• priority paging gives priority to process code pages

Solaris 2 Page Scanner

End of Chapter 9

