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Background

• Code needs to be in memory to execute, but entire program rarely 
needed or used at the same time 
• error handling code, unusual routines, large data structures 

• Consider ability to execute partially-loaded program 
• program no longer constrained by limits of physical memory 
• programs could be larger than physical memory



Background

• Virtual memory: separation of logical memory from physical memory 
• only part of the program needs to be in memory for execution


• logical address space can be much larger than physical address space 
• more programs can run concurrently 
• less I/O needed to load or swap processes (part of it) 

• allows memory (e.g., shared library) to be shared by several processes 
• allows for more efficient process forking (copy-on-write) 

• Virtual memory can be implemented via: 
• demand paging  
• demand segmentation



Virtual Memory Larger Than Physical Memory

hard disk



Shared Library Using Virtual Memory



Demand Paging
• Demand paging brings a page into memory only when it is accessed 

• if page is invalid ➠ abort the operation 
• if page is valid but not in memory ➠ bring it to memory via swapping 
• no unnecessary I/O, less memory needed, faster response, more apps 

• Lazy swapper: never swaps a page in memory unless it will be needed 
• the swapper that deals with pages is also caller a pager 

• Pre-Paging: pre-page all or some of pages a process will need, before they are referenced 
• it can reduce the number of page faults during execution 
• if pre-paged pages are unused, I/O and memory was wasted 

• although it reduces page faults, total I/O# likely is higher



Demand Paging



Demand Paging

• Extreme case: start process with no pages in memory (aka. pure demand paging) 
• OS sets instruction pointer to first instruction of process 

• invalid page ➠ page fault 
• every page is paged in on first access 

• program locality reduces the overhead 
• an instruction could access multiple pages ➠ multiple page faults 

• e.g., instruction, data, and page table entries for them 
• Demand paging needs hardware support 

• page table entries with valid / invalid bit 
• backing storage (usually disks) 
• instruction restart



Valid-Invalid Bit

• Each page table entry has a valid–invalid (present) bit 
• V ➠ in memory (memory is resident), I ➠ not-in-memory 
• initially, valid–invalid bit is set to i on all entries 
• during address translation, if the entry is invalid, it will trigger a page fault 

• Example of a page table snapshot:
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page table!



Page Table (Some Pages Are Not in Memory)



Page Fault

• First reference to a non-present page will trap to kernel: page fault 
• Operating system looks at memory mapping to decide: 

• invalid reference ➠ deliver an exception to the process 
• valid but not in memory ➠ swap in 

• get an empty physical frame 
• swap page into frame via disk operation 
• set page table entry to indicate the page is now in memory 
• restart the instruction that caused the page fault



Page Fault Handling



Demand Paging: EAT

• Page fault rate: 0 ≤ p ≤ 1 
• if p = 0 no page faults  
• if p = 1, every reference is a fault 

• Effective Access Time (EAT):   

(1 – p) x memory access	 + p x ( 

page fault overhead +  

swap page out + swap page in +  

instruction restart overhead)



Demand Paging Example

• Assume memory access time: 200 nanoseconds, average page-fault service 
time: 8 milliseconds 
• EAT  = (1 – p) x 200 + p x (8 milliseconds)  

	     	     = (1 – p)  x 200 + p x 8,000,000  

        	    = 200 + p x 7,999,800 
• if one out of 1,000 causes a page fault, then EAT = 8.2 microseconds 

• a slowdown by a factor of 40! 
• if want < 10 percent, less than one page fault in every 400,000 accesses



Copy-on-Write

• Copy-on-write (COW) allows parent and child processes to initially share the 
same pages in memory 
• the page is shared as long as no process modifies it 
• if either process modifies a shared page, only then is the page copied 

• COW allows more efficient process creation 
• no need to copy the parent memory during fork 
• only changed memory will be copied later 

• vfork syscall optimizes the case that child calls exec immediately after fork 
• parent is suspend until child exits or calls exec 
• child shares the parent resource, including the heap and the stack 

• child cannot return from the function or call exit 
• vfork could be fragile, it is invented when COW has not been implemented



Before Process 1 Modifies Page C



After Process 1 Modifies Page C



Page Replacement

• Memory is an important resource, system may run out of memory 
• To prevent out-of-memory, swap out some pages 

• page replacement usually is a part of the page fault handler 
• policies to select victim page require careful design 

• need to reduce overhead and avoid thrashing 
• use modified (dirty) bit to reduce number of pages to swap out 

• only modified pages are written to disk 
• select some processes to kill (last resort)



Page Fault Handler (with Page Replacement)

• To page in a page: 
• find the location of the desired page on disk 
• find a free frame: 

• if there is a free frame, use it 
• if there is none, use a page replacement policy to pick a victim frame, write 

victim frame to disk if dirty 
• bring  the desired page into the free frame; update the page tables 
• restart the instruction that caused the trap 

• Note now potentially 2 page I/O for one page fault ➠ increase EAT



Page Replacement



Page Replacement Algorithms

• Page-replacement algorithm should have lowest page-fault rate on both first 
access and re-access 
• FIFO, optimal, LRU, LFU, MFU… 

• To evaluate a page replacement algorithm:  
• run it on a particular string of memory references (reference string) 

• string is just page numbers, not full addresses  
• compute the number of page faults on that string 

• repeated access to the same page does not cause a page fault 
• in all our examples, the reference string is 	

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1



Page Faults v.s. Number of Frames



First-In-First-Out (FIFO)

• FIFO: replace the first page loaded  
• similar to sliding a window of n in the reference string 
• our reference string will cause 15 page faults with 3 frames 
• how about reference string of 1,2,3,4,1,2,5,1,2,3,4,5 /w 3 or 4 frames? 

• For FIFO, adding more frames can cause more page faults! 
• Belady’s Anomaly



FIFO Illustrating Belady’s Anomaly



Optimal Algorithm

• Optimal : replace page that will not be used for the longest time 
• 9 page fault is optimal for the example on the next slide 

• How do you know which page will not be used for the longest time? 
• can’t read the future 
• used for measuring how well your algorithm performs



Least Recently Used (LRU)

• LRU replaces pages that have not been used for the longest time 
• associate time of last use with each page, select pages w/ oldest timestamp 
• generally good algorithm and frequently used 
• 12 faults for our example, better than FIFO but worse than OPT 

• LRU and OPT do NOT have Belady’s Anomaly 
• How to implement LRU? 

• counter-based 

• stack-based



LRU Implementation

• Counter-based implementation 
• every page table entry has a counter 
• every time page is referenced, copy the clock into the counter 
• when a page needs to be replaced, search for page with smallest counter 

• min-heap can be used  
• Stack-based implementation 

• keep a stack of page numbers (in double linked list) 
• when a page is referenced, move it to the top of the stack 
• each update is more expensive, but no need to search for replacement



Stack-based LRU



LRU Implementation

• Counter-based and stack-based LRU have high performance overhead 
• LRU approximation with a reference bit 

• associate with each page a reference bit, initially set to 0 
• when page is referenced, set the bit to 1 (done by the hardware) 
• replace any page with reference bit = 0 (if one exists)



Counting-based Page Replacement

• Keep the number of references made to each page 
• LFU replaces page with the smallest counter 
• MFU replaces page with the largest counter 

• based on the argument that page with the smallest count was probably 
just brought in and has yet to be used 

• LFU and MFU are not common



Thrashing

• If a process doesn’t have “enough” pages, page-fault rate may be high 
• page fault to get page, replace some existing frame 
• but quickly need replaced frame back 
• this leads to:  

      low CPU utilization  ➠ 

	 	   kernel thinks it needs to increase the degree of  

               multiprogramming to maximize CPU utilization  ➠ 

	 	   another process added to the system 
• Thrashing: a process is busy swapping pages in and out



Thrashing



Demand Paging and Thrashing 

• Why does demand paging work? 
• process memory access has high locality 
• process migrates from one locality to another, localities may overlap 

• Why does thrashing occur?  
• total size of locality > total memory size



Memory Access Locality



Working-Set Model

• Working-set window(Δ): a fixed number of page references 
• if Δ too small ➠ will not encompass entire locality 
• if Δ too large ➠ will encompass several localities 
• if Δ = ∞ ➠ will encompass entire program 

• Working set of process pi (WSSi): total number of pages referenced in the most 
recent Δ (varies in time) 

• Total working sets: D = ∑ WSSi 
• approximation of total locality 
• if D > m ➠ possibility of thrashing 
• to avoid thrashing: if D > m,  suspend or swap out some processes



Working-Set Model



Kernel Memory Allocation

• Kernel memory allocation is treated differently from user memory 
• for kernel data structures, and for user applications 
• key to the OS performance: utilization, fairness, performance,… 

• Kernel memory is often allocated from a free-memory pool 
• kernel requests memory for structures of varying sizes 
• some kernel memory needs to be physically contiguous 

• e.g., for device I/O



Buddy System

• Memory allocated using power-of-2 allocator 
• memory is allocated in units of the size of power of 2 

• round up a request to the closest allocation unit 
• split the unit into two “buddies” until a proper sized chunk is available 

• e.g., assume only 256KB chunk is available, kernel requests 21KB 
• split it into Al and Ar of 128KB each 
• further split an 128KB chunk into Bl and Br of 64KB 
• again, split a 64KB chunk into Cl and Cr of 32KB each 
• give one chunk for the request 

• advantage: it can quickly coalesce unused chunks into larger chunk 
• disadvantage: internal fragmentation



Buddy System Allocator



Slab Allocator

• Slab allocator is a cache of objects 
• a cache in a slab allocator consists of one or more slabs 
• a Slab contains one or more pages, divided into equal-sized objects 
• kernel uses one cache for each unique kernel data structure 

• when cache created, allocate a slab, divided the slab into free objects 
• objects for the data structure is allocated from free objects in the slab 
• if a slab is full of used objects, next object comes from an empty/new slab 

• Benefits: no fragmentation and fast memory allocation 
• some of the object fields may be reusable; no need to initialize again



Slab Allocation (Linux)



Other Issues – TLB Reach 

• TLB reach: the amount of memory accessible from the TLB 
• TLB reach = (TLB size) X (page size) 

• Ideally, the working set of each process is stored in the TLB 
• otherwise there is a high degree of page faults 

• Increase the page size to reduce TLB pressure 
• it may increase fragmentation as not all applications require large page sizes 
• multiple page sizes allow applications that require larger page sizes to use them 

without an increase in fragmentation



Other Issues: Program Structure

• Program structure can affect page faults 
• int[128,128] data; each row is stored in one page  
• Program 1:	 

           for (j = 0; j <128; j++) 
          for (i = 0; i < 128; i++) 
             data[i,j] = 0; 

	          128 x 128 = 16,384 page faults (assume TLB only has one entry) 

• Program 2: 

           for (i = 0; i < 128; i++) 
         for (j = 0; j < 128; j++) 
             data[i,j] = 0; 

	          128 page faults



Operating System Examples

• Windows XP 
• Solaris 



Windows XP

• Uses demand paging with clustering 
• clustering brings in pages surrounding the faulting page 

• Processes are assigned working set minimum and set maximum 
• wsmin: minimum number of pages the process is guaranteed to have  
• wsmax: a process may be assigned as many pages up to its wsmax 

• When the amount of free memory in the system falls below a threshold: 
• automatic working set trimming to restore the amount of free memory 
• it removes pages from processes that have more pages than the wsmin



Solaris

• Three thresholds to determine paging and swapping 
• lotsfree: threshold (amount of free memory) to begin paging 
• desfree: threshold parameter to increasing paging 
• minfree: threshold parameter to being swapping 

• Pageout scans pages, looking for pages to replace 
• less free memory  more frequent calls to page out 
• two scan rate: slow scan and fast scan 
• priority paging gives priority to process code pages



Solaris 2 Page Scanner



End of Chapter 9


