COP 4610: Introduction to Operating Systems (Spring 2016)

Chapter 9
Virtual Memory

Zhi Wang
Florida State University

Content

- Background

- Demand paging

- Copy-on-write

-+ Page replacement

- Thrashing

- Memory-mapped files

- Operating-system examples

Sackground

-+ Code needs to be in memory to execute, but entire program rarely
needed or used at the same time

- error handling code, unusual routines, large data structures
- Consider ability to execute partially-loaded program
+ program no longer constrained by limits of physical memory

+ programs could be larger than physical memory

Sackground

- Virtual memory: separation of logical memory from physical memory
- only part of the program needs to be in memory for execution
logical address space can be much larger than physical address space
* more programs can run concurrently
less /O needed to load or swap processes (part of it)
- allows memory (e.qg., shared library) to be shared by several processes
- allows for more efficient process forking (copy-on-write)
- Virtual memory can be implemented via:
- demand paging

- demand segmentation

Virtual Memory Larger Than

page O

page 1

page 2

N

[\

7 f

page v

virtual
memory

memory
map

physical
memory

- >

hard disk

Shared Library Using Virtual Memory

stack

1

stack

shared library

1

shared
pages

l

shared library

heap

data

code

1

heap

data

code

Demand Paging

- Demand paging brings a page into memory only when it is accessed
- If page is invalid " abort the operation
- If page Is valid but not in memory = bring it to memory via swapping
* no unnecessary |/0, less memory needed, faster response, more apps
- Lazy swapper: never swaps a page in memory unless it will be needed
- the swapper that deals with pages is also caller a pager
- Pre-Paging: pre-page all or some of pages a process will need, before they are referenced
- It can reduce the number of page faults during execution
- If pre-paged pages are unused, I/0O and memory was wasted

- although it reduces page faults, total I/O# likely is higher

Demand Paging

swap out 0 1 2 3
program . P

A — Yy ¥ v ¥

program
B >v\ swap in 16 17‘18‘19 .

main
memory

Demand Paging

- Extreme case: start process with no pages in memory (aka. pure demand paging)
- OS sets instruction pointer to first instruction of process
- Invalid page " page fault
+ every page is paged in on first access
- program locality reduces the overhead
* an instruction could access multiple pages " multiple page faults
* e.g., instruction, data, and page table entries for them
- Demand paging needs hardware support
+ page table entries with valid / invalid bit
- backing storage (usually disks)

- Instruction restart

Valid-Invalid Bit

Each page table entry has a valid-invalid (present) bit
-V in memory (memory is resident), / " not-in-memory
initially, valid—invalid bit is set to / on all entries
- during address translation, if the entry is invalid, it will trigger a page fault

Example of a page table snapshot:

Frame # v/i bit

page table

Page Table (Some Pages Are Not in Memory)

0
i
0 A 2
valid—invalid
1 B frame bit 3 /d
2 C ol a Ty 4 A
3l D 1 i 5
2| 6 |v
4 E 3 i 6 G A B
5 F 4 i 7
5 g ly C D E
6 G 6 i 8
7 H 7 i 9 F E G H
logical page table 10
memory
12
13
14
15

physical memory

Page Fault

First reference to a non-present page will trap to kernel: page fault
- Operating system looks at memory mapping to decide:

- Invalid reference " deliver an exception to the process

- valid but not iIn memory = swap in
- get an empty physical frame
- swap page into frame via disk operation
- set page table entry to indicate the page is now in memory

- restart the instruction that caused the page fault

Page Fault Handling

load M

_//

@ page is on
backing store
e
operating
system @
reference
@ trap
\,‘41 i
® (]
restart page table
instruction
free frame
reset page
table
physical

memory

\\—//
bring in
missing page

Demand Paging: EAT

- Pagefaultrate: 0 <p < 1
- If p = 0 no page faults
- Ifp =1, every reference is a fault
- Effective Access Time (EAT):
(1 — p) Xx memory access + p X (
page fault overhead +
swap page out + swap page in +

instruction restart overhead)

Demand Paging Example

- Assume memory access time: 200 nanoseconds, average page-fault service
time: 8 milliseconds

- EAT =(1 —p) x 200 + p x (8 milliseconds)
=(1-p) x200 + p x 8,000,000
=200 + p x 7,999,800
- If one out of 1,000 causes a page fault, then EAT = 8.2 microseconds
- a slowdown by a factor of 40!

- If want < 10 percent, less than one page fault in every 400,000 accesses

Copy-on-Write

- Copy-on-write (COW) allows parent and child processes to initially share the
same pages in memory

- the page is shared as long as no process modifies it

- If either process modifies a shared page, only then is the page copied
- COW allows more efficient process creation

* No need to copy the parent memory during fork

- only changed memory will be copied later

Sefore

Process 1 Modifies Page C

physical
process, memory

—> pageA

Process,

—>» pageC je—

After

Process 1 Modifies

Page C

physical
process, memory

process,

> page A R—

- page B «— |

page C —]

— Copy of page C

Page Replacement

- Memory is an important resource, system may run out of memory
- To prevent out-of-memory, swap out some pages
- page replacement usually is a part of the page fault handler
- policies to select victim page require careful design
- need to reduce overhead and avoid thrashing
- use modified (dirty) bit to reduce number of pages to swap out
- only modified pages are written to disk

- select some processes to Kill (last resort)

Page Fault Handler (with Page Replacement)

- To page in a page:
- find the location of the desired page on disk
- find a free frame:
- If there is a free frame, use it

- If there Is none, use a page replacement policy to pick a victim frame, write
victim frame to disk if dirty

- bring the desired page into the free frame; update the page tables
- restart the instruction that caused the trap

- Note now potentially 2 page I/0 for one page fault ™ increase EAT

Page Replacement

frame valid—invalid bit
T =
swap out
Change victim
0 | i to invalid <::)page
il /
(:) f| victim
reset page
table for el
page table Sy
new page @swap \
desired
page in
physical

memory

Page Replacement Algorithms

- Page-replacement algorithm should have lowest page-fault rate on both first
access and re-access

- FIFO, optimal, LRU, LFU, MFU...
- To evaluate a page replacement algorithm:
* run it on a particular string of memory references (reference string)
- string is just page numbers, not full addresses
- compute the number of page faults on that string
- repeated access to the same page does not cause a page fault

- In all our examples, the reference string is
/7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Page Faults v.s. Number of Frames

16
214 \
5
S 12
()
g 10
o
c 8
2
e © -

2

1 2 3 4 5 6

number of frames

First-In-First-Out (FIFO)

FIFO: replace the first page loaded

- similar to sliding a window of n in the reference string

- our reference string will cause 15 page faults with 3 frames

- how about reference string of 1,2,3,4,1,2,5,1,2,3,4,5 /w 3 or 4 frames"?
For FIFO, adding more frames can cause more page faults!

Belady’s Anomaly

reference string
7 012 0 80 4 2 3 03 21 2 01 7 0 1

7| [7] [7] |2 4] [4] [4] 0| |0] 7] [7] [7]
0| |0 3| [2] |2 1| {1 1 0
1| {1 0| [o] [3 3| |2 2| 2| |1

page frames

FIFO lllustrating Belady’s Anomaly

16
o 14
=
8 42 @
()]
g 10
O
© 8
g
2 6
= |
S 4

2

1 2 3 4 5 6 7

number of frames

Optimal Algorithm

- Optimal : replace page that will not be used for the longest time
- 9 page fault is optimal for the example on the next slide
How do you know which page will not be used for the longest time”?
- can’t read the future

used for measuring how well your algorithm performs

reference string
7 01t 2 0 3 0 4 2 3 03 21 2 017 0 1

e @ T 2

page frames

Least Recently Used (LRU)

- LRU replaces pages that have not been used for the longest time
- associate time of last use with each page, select pages w/ oldest timestamp
- generally good algorithm and frequently used
12 faults for our example, better than FIFO but worse than OPT
- LRU and OPT do NOT have Belady’s Anomaly
- How to implement LRU?
- counter-based

- stack-based

reference string
/ 0 1 2 o0 3 0 4 2 3 0 3 2 41 2 0 1 7 0 A1

[e N [2 4| (4| |4]| |O 1 1 |
0| |0] O 0 Ol 104 &8 |8 3 0 0
i [3 2l 2] 2| 2 2 2 7

page frames

LRU Implementation

- Counter-based implementation
- every page table entry has a counter
- every time page is referenced, copy the clock into the counter
- when a page needs to be replaced, search for page with smallest counter
- min-heap can be used
- Stack-based implementation
- keep a stack of page numbers (in double linked list)
- when a page is referenced, move it to the top of the stack

-+ each update iIs more expensive, but no need to search for replacement

Stack-based LRU

reference string
4 7 o 7 1 0 1 2 1 2 7 1 2

2 7 T T

a b
1 2
0 1
7 0
4 4
stack stack
before after

a b

LRU Implementation

-+ Counter-based and stack-based LRU have high performance overhead
- LRU approximation with a reference bit

+ associate with each page a reference bit, initially set to O

- when page is referenced, set the bit to 1 (done by the hardware)

- replace any page with reference bit = O (if one exists)

Counting-based Page Replacement

- Keep the number of references made to each page
- LFU replaces page with the smallest counter
- MFU replaces page with the largest counter

- based on the argument that page with the smallest count was probably
just brought in and has yet to be used

- LFU and MFU are not common

Thrashing

If a process doesn’t have “enough” pages, page-fault rate may be high
page fault to get page, replace some existing frame
but quickly need replaced frame back
- this leads to:
low CPU utilization

kernel thinks it needs to increase the degree of

multiprogramming to maximize CPU utilization =
another process added to the system

- Thrashing: a process is busy swapping pages in and out

Thrashing

|
" thrashing

CPU utilization

degree of multiprogramming

Demand Paging and Thrashing

- Why does demand paging work"?

+ process memory access has high locality

* process migrates from one locality to another, localities may overlap
- Why does thrashing occur?

- total size of locality > total memory size

Memory Access Locality

34 fr—tiih R S — —
‘ | e Iillnr I nnecombI TN g g g ot sl il i
1.1 - mf'
|
4 " Al Al ity ITRATTIeTe e 1 " I 1 [
32 7 A b 1
i B A |
"”H : | || | ! il l i 711!' I TLU"U . t 1-[
R R RN FERITY i
i T L Sl b “‘} h i
30 ‘[J“ e m ‘ lA 1 | |1=" In r —
".! -E' i | HHRT [' T |
T AR e
l'l' A ML
LI 1l
28 "i HeT T ‘
'"' .|'
7 . 111"
9 i 'l 1
= il
> 26 4t e
B l !] !' ‘i "
B " uRkR | '
£ | il I I
24 L 11 i ” | |, lI ud m mlliluo | ui.l m!‘l A
1 I‘ Ty ;',"‘} J L il
It | — . ; ;ﬁ
LK | | SR
: MJ! J||| ’ |

(i WAl iy L et
22 !

u|u||||||"| AN g s LR 7 ,.i.H |r i

.

LI 1 \
: ll'l bl ;.’ ~' g L

Tk UHIIHHIII"HIIW LU e il L S—
2 20 ol L lt (T " L S . - ;”H I .:"l‘
§ ‘ l ;‘i"” """' i "“'l il ;' e '"”'.“'. LR
> T P AIREmANY iy
< 18| | [H\'II'I” '\l"'l'“n‘ ﬂll"m! it iinill ..I[ll[l"l el |H ,.|'|1!1!.

execution time ——»

Working-Set Model

- Working-set window(A): a fixed number of page references
- If A too small = will not encompass entire locality
- If A too large = will encompass several localities
-+ If A = oo m Will encompass entire program

- Working set of process p; (WSSI): total number of pages referenced in the most
recent A (varies in time)

- Total working sets: D =) WSS,
- approximation of total locality
- If D > m = possibility of thrashing

- to avoid thrashing: if D > m, suspend or swap out some processes

Working-Set Model

page reference table
...2615777751623412344434344413234443444...

< «

g Ly

WS(t,) = {1,25,6,7) WSi(t,) = (3.4}

Kernel Memory Allocation

Kernel memory allocation is treated differently from user memory
- for kernel data structures, and for user applications

-+ key to the OS performance: utilization, fairness, performance, ...
Kernel memory is often allocated from a free-memory pool

- kernel requests memory for structures of varying sizes

- some kernel memory needs to be physically contiguous

* e.q., for device |/O

Buddy System

- Memory allocated using power-of-2 allocator
- memory is allocated in units of the size of power of 2
- round up a request to the closest allocation unit
- split the unit into two “buddies” until a proper sized chunk is available
- e.g., assume only 256KB chunk is available, kernel requests 21KB
- gplit it into A, and A, of 128KB each
- further split an 128KB chunk into B, and B, of 64KB
- again, split a 64KB chunk into G, and C, of 32KB each
- give one chunk for the request
- advantage: it can quickly coalesce unused chunks into larger chunk

- disadvantage: internal fragmentation

Buddy System Allocator

physically contiguous pages

256 KB
128 KB 128 KB
AL Ap
64 KB 64 KB
B Bp
32 KB| |32 KB
CL CRr

Slab Allocator

- Slab allocator is a cache of objects
-+ acache in a slab allocator consists of one or more slabs
- a Slab contains one or more pages, divided into equal-sized objects
kernel uses one cache for each unique kernel data structure
- when cache created, allocate a slab, divided the slab into free objects
- Objects for the data structure is allocated from free objects in the slab
if a slab is full of used objects, next object comes from an empty/new slab
Benefits: no fragmentation and fast memory allocation

- some of the object fields may be reusable; no need to initialize again

Slab Allocation (Linux)

cache_chain

kmem_cache kmem_cache

slabs full slabs_partial slabs eamply

Other Issues — TLLB Reach

- TLB reach: the amount of memory accessible from the TLB
- TLB reach = (TLB size) X (page size)
- |deally, the working set of each process is stored in the TLB
- otherwise there is a high degree of page faults
- Increase the page size to reduce TLB pressure
- It may increase fragmentation as not all applications require large page sizes

- multiple page sizes allow applications that require larger page sizes to use them
without an increase in fragmentation

Other Issues: Program Structure

- Program structure can affect page faults
- Int[128,128] data; each row is stored in one page
- Program 1:

for (j = 0; j <128; j++)
for (i = @0; i < 128; i++)
datali,jl = 0;

128 x 128 = 16,384 page faults (assume TLB only has one entry)

- Program 2:

for (i = @0; i < 128; i++)
for (j = 0; j < 128; j++)
datali,jl = 0;

128 page faults

Operating System Examples

Windows XP

Solaris

Windows XP

- Uses demand paging with clustering
- clustering brings in pages surrounding the faulting page
-+ Processes are assigned working set minimum and set maximum
- Wwsmin: minimum numlber of pages the process is guaranteed to have
* wsSmax: a process may be assigned as many pages up to its wsmax
- When the amount of free memory in the system falls below a threshold:
- automatic working set trimming to restore the amount of free memory

- It removes pages from processes that have more pages than the wsmin

Solaris

- Three thresholds to determine paging and swapping
- Jotsfree: threshold (amount of free memory) to begin paging
- desfree: threshold parameter to increasing paging
- minfree: threshold parameter to being swapping
Pageout scans pages, looking for pages to replace
- less free memory more frequent calls to page out
- two scan rate: slow scan and fast scan

* priority paging gives priority to process code pages

Solaris 2 Page Scanner

8192
fastscan

scan rate

100
slowscan

|
minfree

|
desfree

amount of free memory

lotsfree

—nd of Chapter 9

